Fraktals.NL

  Code Chapter 3 Chaos
  
  
Mira
  
back
  
 /*from H.A. Lauwerier Graphics&Fractals, 1994 chapter 6  MIRADSX1 
	translated into Processing by J.G.van Unnik, 2010*/
let a = -0.05,k = 2;
let x1 = 9.8,y1 = 0;
let p1 = 1;
let x2 = 20,y2 = 0;
let p2 = 4;
let x3 = 15,y3 = 0;
let p3 = 2;
let x4 = 2,y4 = 0;
let p4 = 4;
let x5 = 18,y5 = 0;
let p5 = 2;
let x6 = 25,y6 = 0;
let p6 = 6;
let x7 = 7.5,y7 = 0;
let p7 = 4;
function setup() {
  createCanvas(800, 800);
  background(0);
  stroke(255);
  noLoop();
}
function draw() {
  translate(400, 400);
  stroke("lightblue");
  let x = x1,
    y = y1,
    p = p1;
  orbit(x, y, p);
  stroke("darkblue");
  x = x2;
  y = y2;
  p = p2;
  orbit(x, y, p);
  stroke("lightgreen");
  x = x3;
  y = y3;
  p = p3;
  orbit(x, y, p);
  stroke("chocolate");
  x = x4;
  y = y4;
  p = p4;
  orbit(x, y, p);
  stroke("darkorange");
  x = x5;
  y = y5;
  p = p5;
  orbit(x, y, p);
  stroke("yellow");
  x = x6;
  y = y6;
  p = p6;
  orbit(x, y, p);
  stroke("white");
  x = x7;
  y = y7;
  p = p7;
  orbit(x, y, p);
}
function orbit( x, y, p){
	let c=2-2*a;
	let kmax=8000*p;
	let w=a*x+c*x*x/(1+x*x);
	for(let k=0;k
 
Mira1
  
back
  
 /*from H.A. Lauwerier Graphics&Fractals, 1994 chapter 6  MIRADSX1 
	translated into Processing by J.G.van Unnik, 2010*/
let a=0.3,k=2;
let x1=7,y1=0;let p1=2;
let x2=-12,y2=0;let p2=2;
let x3=-21,y3=0;let p3=2;
let x4=5,y4=0;let p4=1;
let x5=9,y5=1;let p5=1;
let x6=5,y6=0;let p6=1;
let x7=7,y7=1;let p7=0.5;
function setup() {
  createCanvas(800,800);
  background(0);
  stroke(255);
  noLoop();
}
function draw(){
translate(400,400);
stroke('lightblue');
let x=x1,y=y1, p=p1;
orbit(x,y,p);
stroke('darkblue');
x=x2;y=y2;p=p2;
orbit(x,y,p);
stroke('lightgreen');
x=x3;y=y3;p=p3;
orbit(x,y,p);
stroke('chocolate');
x=x4;y=y4;p=p4;
orbit(x,y,p);
stroke('darkorange');
x=x5;y=y5;p=p5;
orbit(x,y,p);
stroke('yellow');
x=x6;y=y6;p=p6;
orbit(x,y,p);
stroke('white');
x=x7;y=y7;p=p7;
orbit(x,y,p);
}
function orbit( x, y, p){
	let c=2-2*a;
	let kmax=8000*p;
	let w=a*x+c*x*x/(1+x*x);
	for(let k=0;k
 
Mira2
  
back
  
 /*from H.A. Lauwerier Graphics&Fractals, 1994 chapter 6  MIRADSX1 
	translated into Processing by J.G.van Unnik, 2010*/
let a=0.3,k=2;
let x1=8,y1=0;let p1=2;
let x2=-20,y2=0;let p2=2;
let x3=-15,y3=0;let p3=6;
let x4=-5.3,y4=0;let p4=2;
let x5=9,y5=0;let p5=2;
let x6=0,y6=0;let p6=0;
let x7=0,y7=0;let p7=0;
function setup() {
  createCanvas(800,800);
  background(0);
  stroke(255);
  noLoop();
}
function draw(){
translate(400,400);
stroke('lightblue');
let x=x1,y=y1, p=p1;
orbit(x,y,p);
stroke('darkblue');
x=x2;y=y2;p=p2;
orbit(x,y,p);
stroke('lightgreen');
x=x3;y=y3;p=p3;
orbit(x,y,p);
stroke('chocolate');
x=x4;y=y4;p=p4;
orbit(x,y,p);
stroke('darkorange');
x=x5;y=y5;p=p5;
orbit(x,y,p);
stroke('yellow');
x=x6;y=y6;p=p6;
orbit(x,y,p);
stroke('white');
x=x7;y=y7;p=p7;
orbit(x,y,p);
}
function orbit( x, y, p){
let c=2-2*a;
let kmax=4000*p;
let w=a*x+c*x*x/(1+x*x);
for(let k=0;k
  back
 
 
